

1 **First reported case of Thunderstorm Asthma in Israel**

2
3 Yoav Yair^{1,*}, Yifat Yair², Baruch Rubin², Ronit Confino-Cohen³, Yosef Rosman³
4 Eduardo Shachar⁴ and Menachem Rottem⁵

5
6 1 – Interdisciplinary Center (IDC) Herzliya, School of Sustainability, Israel

7 2 – Hebrew University of Jerusalem, Faculty of Agriculture, food and Environment, Rehovot, Israel

8 3 – Meir Medical Center, Kfar-Saba, Israel

9 4 - Rambam Medical Center, Haifa, Israel

10 5 – Ha'Emek Medical Center, Afula, Israel

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 ***Corresponding author**

30 Prof. Yoav Yair

31 School of Sustainability, Interdisciplinary Center (IDC) Herzliya

32 P.O. Box 167 Herzliya 4610101 Israel

33 (p) +972-9-9527952 (m) +972-52-5415091 (f) +972-9-9602401

34 Email: yoav.yair@idc.ac.il

35

36 **Abstract.** We report on the first recorded case of thunderstorm asthma in Israel, that
37 occurred during an exceptionally strong Eastern Mediterranean super-cell thunderstorm
38 on October 25th 2015. The storms were accompanied by intensive lightning activity,
39 severe hail, downbursts and strong winds followed by intense rain. The hospital
40 admission records from three hospitals – two in the direct route of the storm (Meir
41 Medical Center in Kfar-Saba and Ha'Emek in Afula) and the other just west of its
42 ground track (Rambam Medical Center in Haifa) showed that the amount of admissions
43 of patients with respiratory problems in the hours immediately following the storm
44 increased compared with the average numbers in the days before. Following the passage
45 of the gust front and the ensuing increase in particle concentrations, within several hours
46 there was a noticeable increase in the number of patients with respiratory problems, in
47 line with the pattern reported by Thien et al., (2018) for the massive epidemic in Perth,
48 Australia. This increase in patient presentation to the ER persisted for 48-72 hours
49 before going back to normal values, indicating that the event was related to the super-
50 cell outflow. We discuss how the likelihood of incidence of such public-health events
51 associated with thunderstorms will be affected by global trends of population growth,
52 urbanization and climate change.

53

54 **1. Introduction.**

55 Thunderstorms and lightning are natural hazards, lethal and destructive with
56 important implications on human societies. They are often accompanied by severe
57 weather, hail and flash flooding that entail significant economic losses (Yair, 2018).
58 Public health effects of thunderstorms that are not related to direct strikes of people are
59 caused by downdrafts during the mature and decay stages of thundercloud evolution.
60 The strong down-winds from the thundercloud, often accompanied by precipitation
61 particles, reach the surface and cause cold outflows. These winds have the potential to
62 eject large concentration of pollen and dust particles into the air, releasing allergens in
63 the size range < 2.5 micrometers. Such particles can be inhaled into the respiratory
64 system and cause an acute allergic response. If occurring during the flowering season
65 of specific plants, this may result in "*Thunderstorm Asthma*" epidemics (Bellomo et al.
66 ,1992; Packe and Ayers, 1995; Venables et al., 1997; Wardman et al., 2002; Dales et
67 al., 2003; D'Amato et al., 2016; 2017), which are expressed as severe respiratory
68 problems, especially in sensitive populations (infants, senior citizens and people with
69 prior allergic susceptibility). During the development stage, updrafts carry surface

70 aerosols and pollen particles into the cloud, where the high humidity causes them to
71 rupture. At the mature stage of the thunderstorm, downdrafts and precipitation carry
72 these fragments to the ground. When the winds impinge on the surface they diverge and
73 the outflow can enhance the concentrations of airborne particles (when occurring in dry
74 desert areas this leads to the formation of well-known dust-wall known as "Haboob").
75 If the storm occurs during flowering season, the gust front below the cloud may release
76 more pollen from grasses and plants, and then updrafts may entrain them into the cloud
77 base. Strong electric fields develop in the thunderstorm which can further accelerate
78 pollen rupture, increasing the risk of exposure to allergens.

79 Grass pollen is a well-known cause of hay-fever and allergic asthma, and has been
80 implicated as the cause of two cases of thunderstorm asthma epidemics, in Melbourne
81 (1987/1989) and in London (1994). However, Suphioglu et al. (1998) stated that grass
82 pollen is too large to penetrate into the lower airways and trigger the allergic response.
83 The electric fields and humidity can rupture the pollen particles, releasing 700
84 fragments that contain the major allergen Lol p 5; They showed a 50-fold increase in
85 the concentration of starch granules in the atmosphere following rain. They also showed
86 that free grass allergen molecules interact with ambient pollution particles (diesel
87 exhaust carbon) offering an additional mode of transport and penetration into human
88 lower airways.

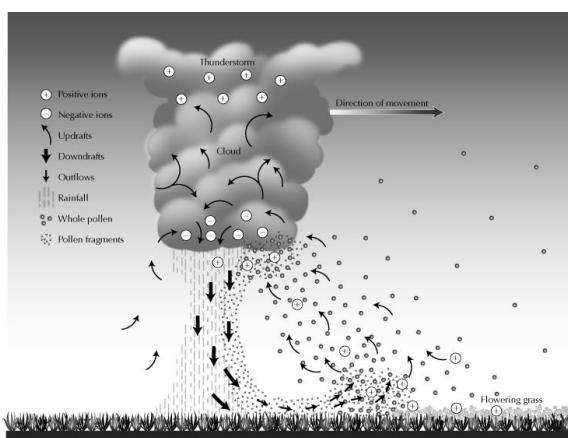
89

90 **Figure 1:** A schematic
91 description of the mechanism that
92 enhances the concentrations of
93 airborne aerosols (either pollution
94 particles or pollen) ahead of a
95 mature thunderstorm (Taylor and
96 Jonsson, 2004).

97

98

99


100

101

102

103

104

105 Nasser and Pulimood (2009) reviewed the role of fungal spores such as *Alternaria*
106 in outbreaks of thunderstorm asthma and showed that the sudden increase in spore
107 concentrations in the air following large-scale thunderstorm cold flows affects atopic,

108 sensitized people, and may lead to asthmatic response. There are numerous reports from
109 many countries about cases of thunderstorm asthma (Dabrer et al., 2012; Andrew et
110 al., 2017; Beggs, 2017). For example, the Waga-Waga epidemic in Australia on
111 October 30th 1997 led to 215 ER visits by asthmatic subjects with 41 hospitalizations,
112 a fact that created an unusual burden on the health services there (Grgis et al., 2000).
113 The most extreme case on record occurred in Melbourne, Australia, in November 2016
114 (Thien et al., 2018), when a thunderstorm asthma epidemic following a gust front
115 induced by thunderstorms resulted in more than 8000 people being admitted to hospitals
116 for allergy and respiratory problems, with 10 fatalities. Though not directly caused by
117 lightning as an electrical phenomenon, the allergic response of the population followed
118 (or was prompted) by a chain-reaction commencing with the dynamics of the cold
119 outflow from the thunderstorm. D'Amato et al. (2015) characterized the main aspects
120 of thunderstorm-associated asthma epidemics (based on their Table 2): (a) The
121 epidemics are limited to seasons when there are high concentrations of airborne
122 allergenic pollens (b) There is a close temporal association between the start of the
123 thunderstorm and the onset of the epidemics. (c) There are not high levels of pollution
124 related gasses and particles during the thunderstorm asthma outbreak (d) People who
125 stay indoors with windows closed are not affected and (e) there is a major risk for
126 subjects who are not optimally treated for asthma; subjects with pollen-induced allergic
127 rhinitis and without prior asthma are also at risk.

128 While this definition focuses on the allergic responses to airborne pollen or fungal
129 spores, some reports consider other environmental factors such as humidity,
130 temperature and pressure changes (Rossi et al., 1993; Ito et al., 1989). Another chemical
131 effect of lightning activity that may also play a role in thunderstorm asthma epidemics
132 is the production of significant amounts of NO and O₃ near the surface. Lightning-
133 produced NO_x (LtNO_x) is an important agent in tropospheric chemistry and is also a
134 precursor for the production of greenhouse gasses (Price et al., 1997; Boersma et al.,
135 2005; Ott et al., 2010). Ozone by itself is a potent oxidizer and is known to create severe
136 respiratory response when inhaled (Molfino et al., 1991; Gleason et al., 2014). Although
137 it is short-lived and quickly recombines with molecular oxygen, ozone is present near
138 the surface for several hours after electrical activity, and together with airborne pollen
139 or pollution particles can induce a synergistic effect on human health. Campbell-
140 Hewson et al. (1994) considered several types of pollen and fungal spores, but also
141 ozone concentrations and lightning, in the context of a thunderstorm asthma epidemic

142 in Cambridge and Peterborough in southern England in June 1994. They reported an
143 increase by a factor ~2 of ozone concentration (45 ppb compared with daily average of
144 28.7 ppb) and high pollen counts before the rain and concluded that the causes of the
145 epidemic were likely multifactorial. It should be pointed out that although there were
146 37 lightning strikes in that region, the authors did not attribute the rise in ozone
147 concentrations to lightning but rather to pollution. A thorough review published by the
148 World Allergy Organization (D'Amato et al., 2015) surveyed the expected changes in
149 the occurrence of thunderstorm asthma and concluded that people with hypersensitivity
150 to pollen allergy should be advised to stay indoors when there are clear indications that
151 thunderstorm activity is expected. Such early-warning capabilities for lightning are
152 becoming operational in some countries (for example the Lightning Potential Index
153 [LPI] which is used in WRF; Lynn and Yair, 2010; Lynn et al., 2012), but there seems
154 to be a gap between forecasting lightning and administrating public-health warnings,
155 and sensitive populations are not always effectively alerted.

156

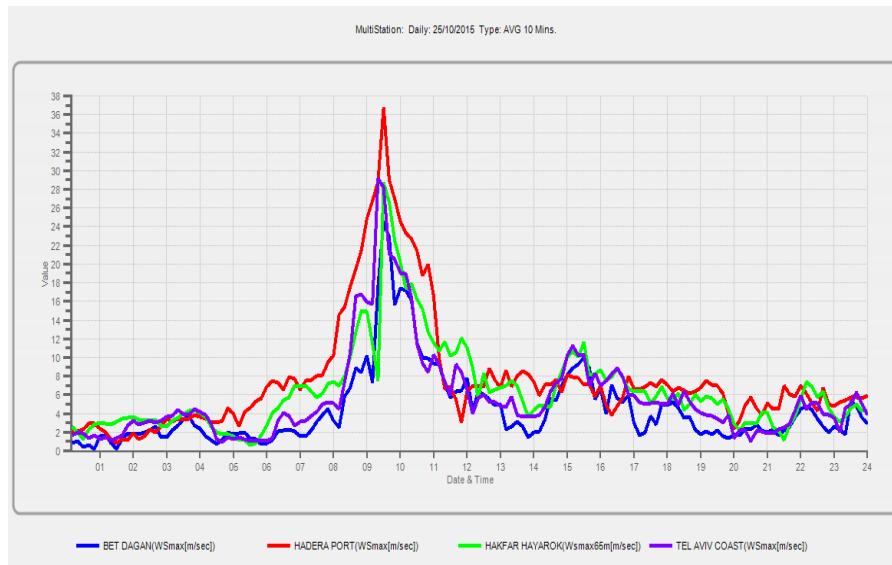
157 2. Data Sources

158 We used data from various sources for studying possible correlations between
159 meteorological conditions, lightning occurrence, aerosol concentrations, pollen counts
160 and respiratory illnesses.

- 161 a. Lightning data was obtained from the Israeli Lightning Detection Network
162 (ILDN) operated by the Israeli Electrical Corporation (IEC). The system and its
163 capabilities are described by Shalev et al. (2011).
- 164 b. Meteorological data – temperature, humidity, wind and pressure data was
165 obtained from the Israeli Meteorological Service (IMS) for selected stations
166 throughout the country.
- 167 c. Aerosol data – we used the PM2.5 and PM10 data that are collected routinely
168 by the Ministry of Environmental Defense in Israel, that operates a national
169 network of > 40 stations. These stations report particle concentrations at 5-
170 minute intervals. That system also records Ground Level Ozone data.
- 171 d. Pollen data – The daily average pollen and spore concentrations (number/m³)
172 were obtained from the Ted Arison Laboratory for Monitoring Airborne
173 Allergens at Tel-Aviv University. The species are listed in Appendix 1.
- 174 e. Hospital admission records for respiratory symptoms were collected for a
175 specific list of allergy-related illnesses that can be attributed to airborne particles

176 in thunderstorm events. The long- term averages were obtained from hospital
177 records to establish the baseline.

178

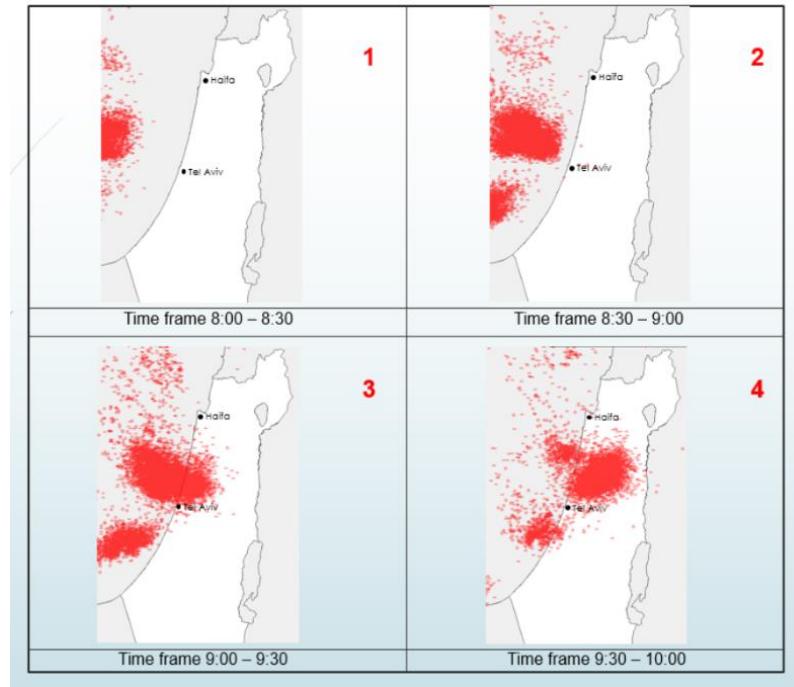

179 3. Meteorological Conditions

180 The synoptic condition leading to the unusual event described here are summarized
181 by Razy et al. (2018) and will be briefly described below. During October 24th 2015 the
182 eastern Mediterranean was dominated by a Red-Sea Trough (RST, Ben-Ami et al.,
183 2014), a low-pressure region extending from the south along the Red-Sea northward to
184 the eastern Mediterranean. This system transports tropical air toward the Levant region
185 in the lower-levels. At the Upper-levels, a pronounced trough was situated west of the
186 Levant. This trough had two effects: One is a transport of tropical air by the south-
187 southwesterly winds aloft and second is upward motion at the mid-levels, induced by
188 positive vorticity advection ahead of this trough. Prior to the beginning of the storm, a
189 cold front was noted west of the Israeli coast. At the same time a meso-scale cyclone
190 was formed over the Sinai Peninsula and the southeastern Mediterranean. During the
191 morning hours of October 25th, the cyclone, together with the cold front, moved toward
192 inland. Around 07 UTC this cold front crossed central Israel, accompanied by extremely
193 developed thunderclouds, with tops reaching 17 km height. The highly populated area
194 of central Israel, extending from the coastal region inland, was subjected to torrential
195 rains for 1-2 hours and large hailstorm with over 5cm diameter. The intensity of the
196 storm can be attributed, at least partly, to the tropical nature of the warm air transported
197 from south by the RST, ahead of the storm. The super-cell subsided upon reaching the
198 Jordan rift in eastern Israel. The entire event caused 1 fatality, extensive flooding in
199 several Israeli cities and agricultural damages. It also impacted the national electrical
200 grid with power outages lasting up to 3 days in central Israel.

201 a. **Wind** – Based on the Israeli Meteorological Service data, the storm was typified
202 by destructive south-westerly winds that exceeded 25 m s⁻¹, with gusts of >36
203 m s⁻¹, which can be attributed to the downbursts from the active cells. Figure 2
204 presents wind speeds measured at several locations. The distance from Tel-Aviv
205 coast (purple line) to Hadera port (red line) is approximately 40 km, indicating
206 a very wide gust front that swept across central Israel together with the
207 movement of the active cells. The sustained high winds lasted for more than two
208 hours, and caused a significant increase in amounts of airborne particulate
209 matter (see below).

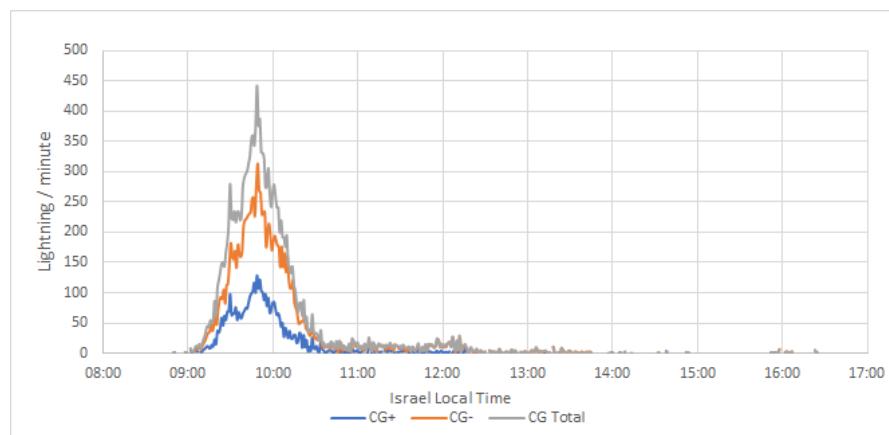
210

211


212 **Figure 2:** Wind speed at 4 different stations along Israel. Bet Dagan (in blue) is located 12 km southeast
213 of Tel-Aviv. Hadera Port (red) is located on the coastline, 45 km north of Tel-Aviv. Hakfar Hayarok
214 (green) is 5 km northeast of Tel-Aviv, and Tel-Aviv coast (purple) is located on the Mediterranean
215 coastline. All stations recorded an abrupt and short-lived increase in wind-speed around 10 AM local
216 time, indicating the passage of the gust front. Data courtesy the Israeli Meteorological Service.
217

218

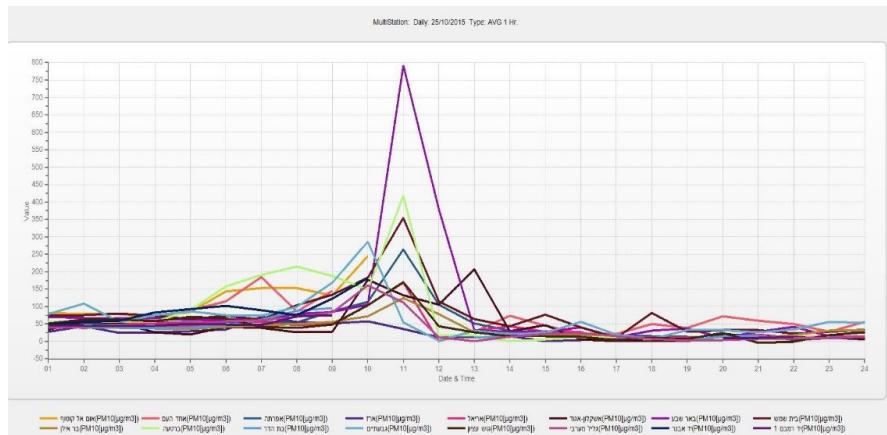
b. Electrical Activity - More than 17,000 cloud-to-ground lightning strokes were
219 registered by the ILDN during this event, exceeding the annual total for the
220 entire country (Figure 3). As Figure 4 shows, at the peak of the event the average
221 cloud-to-ground flash rates between 090-0930 LT were greater than 450 strokes
222 per minute. One should consider that this is only the Cloud-to-Ground (CG)
223 flash rate as the ILDN does not record Intracloud flashes (IC). If we accept the
224 ratio of IC/CG reported by Yair et al. (1998), then the total flash rate would be
225 more than 1000 flashes per minute, exceeding the maximum global record of
226 flash rates found in the Argentina-Paraguay border (Zipser et al., 2006). This
227 was the most powerful thunderstorm ever observed in Israel since lightning
228 detection became operational in 1997.


229
230
231
232
233
234

235
236
237
238

Figure 3: Lightning strokes detected on October 25th 2015 by the ILDN (Israel Lightning Detection Network) operated by the Israeli Electrical Corporation. Each point is a ground stroke. The panels show cumulative values at 30 minutes intervals, local time indicated.

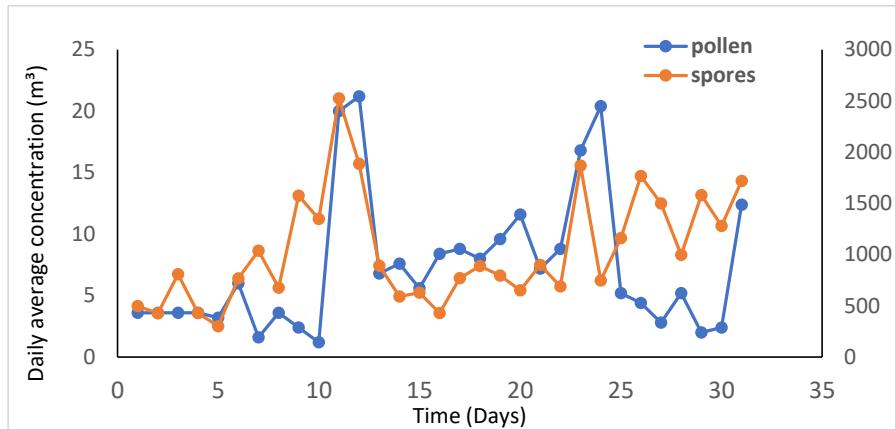
239
240
241
242
243
244


Figure 4: 1-minute accumulated lightning numbers detected on October 25th 2015 as a function of local time. The total cloud-to-ground stroke rate (grey) exhibits a sharp maximum around 09:45 local time, as the cells passed over central Israel.

245 **4. Particle Concentrations**

246 The results from the Israeli Ministry for Environmental Protection's air-quality
247 monitoring network show a remarkable increase in the concentrations of PM 2.5
248 particles, up to 10-fold the normal values (Figure 5). This is due to the very strong winds
249 ahead of the cells, that picked up considerable amounts of dust, pollen and other types
250 of aerosols from the surface.

251



252

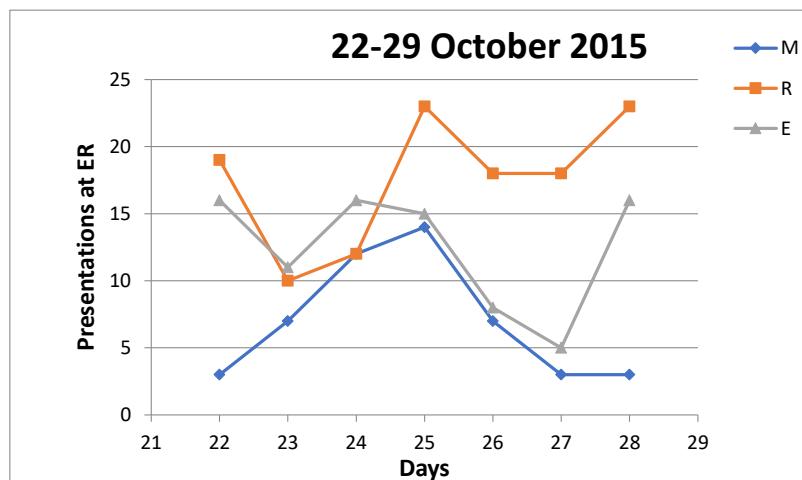
253 **Figure 5:** Mass concentration of PM10 aerosols for 16 stations in Israel, 25th October 2015. Data is given
254 in $\mu\text{g m}^{-3}$. Note the peak around 1100 local time, coinciding with the passage of the gust front. The sharp,
255 strong peak was measured at the Rambam Medical Center in haifa.

256

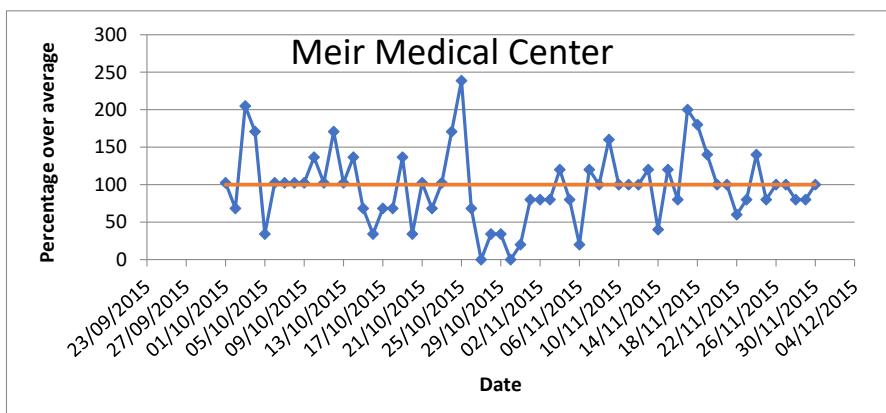
257 The daily pollen amounts for October 2015 (Figure 6) exhibit two significant peaks,
258 which are related to severe weather events. It should be noted that before the onset of
259 the storm on October 25th, there were already larger than usual amounts of pollen and
260 spores in the air (up to a factor of 3). This supports the thunderstorm asthma hypothesis
261 of pollen processing inside the storm by humidity and electric fields, that results in
262 rupture and release of allergens into the cold outflow (D'Amatto et al., 2015; Beggs,
263 2017). The decrease in pollen concentrations after the storm is explained by washout
264 and dilution after the rain and winds associated with passage of the active cells. The list
265 of flowering allergenic plants in October in Israel is presented in Appendix A.

266

267 **Figure 6:** Daily average concentrations of pollen and spore numbers for October 2015, based on
268 data collected at Tel-Aviv University's monitoring station in the botanical gardens on campus (Data
269 courtesy of Prof. Amram Eshel, the Laboratory for Pollen Monitoring, Tel-Aviv University).


270

271 **5. Hospital ER admissions**


272 The hospital admission records of patients with respiratory problems were obtained
273 from three hospitals. The Meir Medical Center is located in the city of Kfar-Saba
274 (population 110,000), 15 km north-east of Tel-Aviv in the central coastal plain. The
275 Ha'Emek Medical Center is located in Afula (population 43,000), a regional urban
276 center located in an agricultural and rural part of northern Israel, close to Mt. Tabor.
277 The Rambam Medical Center is located in Israel's largest port city of Haifa (population
278 280,000) and is the largest of the three. Figure 7 shows the records of a full week with
279 numbers of patients, starting 3 days before the event. The ER admission records show
280 that the numbers of presentations of patients on October 25th increased compared with
281 the numbers of the days before the storm. Although in absolute numbers the numbers
282 may seem low, the values admitted on the day of the thunderstorm represent a clear
283 deviation from monthly average for October. At the Meir (located just below the
284 ground-track of the storm cells) and Rambam (located west of the ground-track)
285 hospitals there was a clear increase in the number of ER presentations which can be
286 related to the passage of the gust-front in the surrounding areas and the ensuing increase
287 in particle concentrations. Based on records of arrival times at the ER, we noted that
288 within several hours after the thunderstorm there was a noticeable increase in the
289 number of patients with respiratory problems, in line with the pattern reported by
290 Newson et al. (1997) and Thien et al., (2018). At the Ha'Emek medical center in Afula

291 there was no significant increase and the numbers were practically the same as the day
292 before. In all three hospitals, this increase in patient presentation to the ER with
293 respiratory problems persisted for 24 hours and a clear decline was noticed in the
294 following day, likely related to a wash-out effect by precipitation that followed the
295 passage of the active cells. This decline was more pronounced at the Meir and Ha'Emek
296 hospitals which experienced heavy rains during of the storm, and it lasted for 48 hours.
297 At the Rambam Medical Center in Haifa the numbers of ER presentations with
298 respiratory problems rose again to high values, likely to the ambient values of air
299 pollution related to aerosols in the Bay of Haifa, a well-known source of industrial
300 emissions (Sa'aroni et al., 2018).

301
302 **Figure 7:** Emergency room presentations at 3 Israeli hospitals in the 3 days preceding and following the
303 October 25th 2015 super-cell event: M = Meir Medical center (blue), R = Rambam medical center
304 (orange), E = HaEmek medical center (grey).
305

306

307 **Figure 8:** Two months of ER presentations of patients with respiratory problems at the Meir Medical
308 Center in Kfar-Saba, central Israel (for the period 1.10.2015-30.11.2015). The October 25th record shows
309 a 250% increase above the long term average in a single day.

310

311 **6. Discussion**

312 In most reported cases of thunderstorm asthma in Europe, Canada, US and
313 Australia, the initiating agents were summer convective storms, and their occurrence
314 coincided with the flowering season of many plant species whose pollen is known to be
315 highly allergenic. In Israel, thunderstorms and lightning occurs almost exclusively
316 during winter months ((December-January-February) and are associated with the
317 passage of Cyprus Lows or Red-Sea Trough [RST] (Ziv et al., 2008; Shalev et al., 2011;
318 Yair et al., 2014; Ben-Ami et al., 2015). During these months there is little flowering
319 and pollen concentrations are low. However, some of the most severe convective events
320 in Israel occur during fall and spring months, when the RST pressure system transports
321 mid-level moisture into the eastern Mediterranean and the atmosphere is unstable,
322 enabling deep convection and intense lightning activity. These events occur mostly in
323 October-November and March-May, and coincide with flowering of various allergen-
324 bearing plant species, for example *Ambrosia* spp. (Waisel et al., 1997; Waisel et al.,
325 2008; Appendix A), and so have the potential to instigate thunderstorm-asthma
326 epidemics.

327 The October 25th 2015 super-cell event was by far one of the strongest thunderstorm
328 episodes ever recorded in Israel. The unique synoptic circumstances of this event
329 coincided with massive flowering of *Ambrosia* spp. already shown to be highly
330 allergenic and wide-spread in central Israel (Yair et al., 2017; 2018). Previous studies
331 showed that the mechanism by which thunderstorm dynamics recycle ambient aerosols
332 is very effective in releasing allergens from pollen particles, that may otherwise not
333 reach and affect sensitized populations (Taylor and Jonsson, 2004; D'Ammato et al.,
334 2015). The strong electric fields that existed during that thunderstorm, manifested by
335 the high flash rate, likely aided in exploding the outer shell of pollen particles and
336 enriching the air with allergens, that accompanied other aerosol particles already
337 present in the environment. The track of the storm passed directly above the densely
338 populated, mostly urban part of Israel, where the ambient concentrations of pollution
339 particles was already high. Additionally, as the spore counts indicate (Figure 6), the
340 background levels of fungal spores, that play an important role in asthma allergenicity

341 (Packe and Ayers, 1986; Dales et al., 2003), was high the day before the storm. Thus,
342 it was the convergence of several factors on the particular day that initiated the observed
343 increase in ER respiratory presentations. Admittedly, the public health data presented
344 in this study is limited, but follow-up research being presently conducted is bound
345 enable us to properly identify the characteristics of admitted patients (as performed by
346 Thien et al., 2018).

347 What can be done to protect sensitized populations against thunderstorm
348 asthma, especially in light of the emerging trends of thunderstorm frequency (Romps
349 et al., 2016; Brooks, 2013; Diffenbaugh et al., 2013; Yair et al., 2018), the extended
350 period of plant flowering (Ziska et al., 2011) and the increase in allergen content in
351 pollen (Singer et al., 2005) in a warmer climate? A thorough review published by the
352 World Allergy Organization (D'Amato et al., 2015) surveyed the expected changes in
353 the occurrence of thunderstorm asthma and concluded that people with hypersensitivity
354 to pollen allergy should be advised to stay indoors when there are clear indications that
355 thunderstorm activity is expected. Silver et al. (2018) examined the seasonality and
356 predictability of asthma-related admission at Melbourne hospitals, using time-series
357 ecological approach. They suggest that the observed spring peak in asthma patient
358 numbers may be related to thunderstorm asthma as they are associated with rainfall,
359 high humidity, and enhanced grass pollen levels, but the rarity of such events
360 undermines predictive capabilities. Indeed, early-warning capabilities for lightning are
361 becoming operational in some countries (for example the Lightning Potential Index
362 [LPI] which is being used for medium-range weather forecast models; Lynn and Yair,
363 2010; Lynn et al., 2012) and pollen forecast models are also used to predict the onset
364 and spread of pollen concentrations (Sofiev et al., 2013; Zhang et al., 2014). However,
365 there seems to be a gap between a combined forecasting procedure of pollen and
366 lightning and administrating public-health warnings, and thus sensitive populations
367 may not be effectively alerted. We therefore suggest to include proper public health
368 alerts when there is clear indication for the coincidence of thunderstorms during plant
369 flowering season in specific regions where allergenic species are found.

370
371
372

373 **Acknowledgment:** This research is supported by the Israeli Science Foundation and
374 the National Chinese Science Foundation grant 2460/17. Pollen data courtesy Prof.
375 Amram Eshel, Tel-Aviv University. Lightning data obtained from the Israeli Electrical

376 Corporation (IEC). We wish to thank Dr. Nurit Keinan for her kind help with Appendix
377 A.

378
379 **References**

380 Beggs, P. J. (2017). Allergen aerosol from pollen-nucleated precipitation: A novel
381 thunderstorm asthma trigger. *Atmos. Environ.*, 152, 455-457.

382 Bellomo R, Gigliotti P, Treloar A, Holmes P, Suphioglu C, Singh MB, and Knox
383 RB. (1992). Two consecutive thunderstorm associated epidemics of asthma in the city
384 of Melbourne. *Med. J. Aust.*, 156, 834-837.

385 Ben-Ami, Y., Altaratz, O. Yair Y. and Koren, I. (2015). Lightning characteristics
386 in Eastern Mediterranean thunderstorms during different synoptic systems. *Nat. Haz.*
387 *Earth Syst. Sci.*, 15, 2449-2459. doi:10.5194/nhess-15-2449-2015

388 Boersma, K. F., Eskes, H. J., Meijer, E.W., and Kelder, H. M. (2005). Estimates of
389 lightning NO_x production from GOME satellite observations, *Atmos. Chem. Phys.*, 5,
390 2311-2331, doi:10.5194/acp-5-2311-2005.

391 Brooks, H. E. (2013). Severe thunderstorms and climate change. *Atmos. Res.*, 123,
392 129-138.

393 Dabrera, G., Murray, V., Emberlin, J., Ayres, J. G., Collier, C., Clewlow, Y., and
394 Sachon, P. (2012). Thunderstorm asthma: an overview of the evidence base and
395 implications for public health advice. *QJM: International J. Medicine*, 106(3), 207-217.

396 D'Amato, et al. (2015). Meteorological conditions, climate change, new emerging
397 factors and asthma and related allergic disorders. A statement of the World Allergy
398 Organization. *WAO J.*, 8, 25-52. DOI 10.1186/s40413-015-0073-0.

399 D'Amato, G., Vitale, C., D'Amato, M., Cecchi, L., Liccardi, C., Molino, A.,
400 Vatrella, A., Sanduzzi, A., Maesano, C. and Annesi-Maesano, I. (2016). Thunderstorm-
401 related asthma: what happens and why. *Clin. Exp. Allergy*, 46, 390-96.

402 D'Amato, G., Annesi Maesano, I., Molino, A., Vitale, C. and D'Amato, M. (2017).
403 Thunderstorm-related asthma attacks. *J. Allergy Clin. Immunol.*, 139, 1786-87.

404 Dales R. E., Cakmak S., Judek S., et al., 2003. The role of fungal spores in
405 thunderstorm asthma. *Chest*, 123, 745-750.

406 Diffenbaugh N. S., Scherer M. and Trapp, R. J., (2013). Robust increases in severe
407 thunderstorm environments in response to greenhouse forcing. *Proc. Natl. Acad Sci.*,
408 101:16,361-6. doi:[10.1073/pnas.1307758110](https://doi.org/10.1073/pnas.1307758110).

409 Grgis ST, Marks GB, Downs SH, et al., (2000). Thunderstorm associated asthma
410 in an inland town in south-eastern Australia. Who is at risk? *Eur. Respir. J.*, 16:3-8.

411 Gleason, J. A., L. Bielroy and J. A. Fagliano (2014). Associations between ozone,
412 PM2.5, and four pollen types on emergency department pediatric asthma events during
413 the warm season in New Jersey: A case-cross over study. *Environ. Res.*, 132, 421-429.

414 Keinan, N. (1992). Comparison of pollen allergenicity of closely related plant
415 populations and species. Ph.D. dissertation, Tel-Aviv University, 115 pp (in Hebrew).

416 Lynn, B. and Yair, Y. (2010). Prediction of lightning flash density with the WRF
417 model. *Adv. Geosci.*, 23, 11-16, doi:10.5194/adgeo-23-11-2010.

418 Lynn, B., Y. Yair, C. Price, G. Kelman and A. J. Clark (2012). Predicting Cloud-
419 to-Ground and Intracloud Lightning in Weather Forecast Models. *Weather and*
420 *Forecasting*, 27, 1470-1488, doi:10.1175/WAF-D-11-00144.1.

421 Marks G. B., Colquhoun J. R., Grgis S. T., et al., 2001. Thunderstorm outflows
422 preceding epidemics of asthma during spring and summer. *Thorax*, 56:468-471

423 Molfino N. A., Wright S. C., Katz I., Tarlo S., Silverman F., McClean P. A. et al.,
424 1991. Effect of low concentrations of ozone on inhaled allergen responses in asthmatic
425 subjects. *Lancet*; 338:199–203.

426 Nasser S. M. and T.B. Pulimood, 2009. Allergens and thunderstorm asthma. *Curr.*
427 *Allergy Asthma Rep.*, 9 (5), pp. 384-390, doi:10.1007/s11882-009-0056-8.

428 Newson R., Strachan D. P., Archibald E., et al. (1997), Effect of thunderstorms
429 and airborne grass pollen on the incidence of acute asthma in England, 1990–
430 1994. *Thorax*, 52, 680–685.

431 Ott, L. E., Pickering, K. E., Stenchikov, G. L., Allen, D. J., De-Caria, A. J., Ridley,
432 B., Lin, R.-F., Lang, S., and Tao, W.-K., 2010. Production of lightning NO_x and its
433 vertical distribution calculated from three-dimensional cloud-scale chemical transport
434 model simulations, *J. Geophys. Res.*, 115, D04301, doi:10.1029/2009JD011880.

435 Packe, G. E., and Ayres, J. (1985). Asthma outbreak during a thunderstorm. *The*
436 *Lancet*, 326 (8448), 199-204.

437 Packe, G. E., and Ayres, J. (1986). Aeroallergen skin sensitivity in patients with
438 severe asthma during a thunderstorm. *The Lancet*, 327 (8485), 851-852.

439 Pawar, S.D., V. Gopalakrishnan, P. Murugavel, N. E. Veremey and A. A.
440 Sinkevich, 2017. Possible role of aerosols in the charge structure of isolated
441 thunderstorms. *Atmos. Res.*, 183, 331-340.

442 Price, C., Penner, J., and Prather, M., (1997), NO_x from lightning (1). Global
443 distribution based on lightning physics, *J. Geophys. Res.*, 102, 5929–5941.

444 Rossi O. V. J., Kinnula V. L., Tienari J. and Huhti E., 1993. Association of severe
445 asthma attacks with weather, pollen, and air pollutants. *Thorax*, 48:244–8.

446 Romps et al. (2014), Projected increase in lightning strikes in the United States due
447 to global warming. *Science*, 346, 6211, 851-854.

448 Saaroni, H., E. Levi and B. Ziv (2018), Particulate matter in the summer season
449 and its relation to synoptic conditions and regional climatic stress – the case of Haifa,
450 Israel. *Water, air, soil poll.*, 229, 313. doi: 10.1007/s11270-018-3943-6.

451 Shalev, S., Saaroni, H., Izsak, T., Yair, Y. and Ziv, B. (2011), The spatiotemporal
452 distribution of lightning over Israel and the neighboring area and its relation to regional
453 synoptic systems, *Nat. Hazards Earth Syst. Sci.*, 11, 2125–2135, doi:10.5194/nhess-11-
454 2125-2011.

455 Silver JD, Sutherland MF, Johnston FH, Lampugnani ER, McCarthy MA, Jacobs
456 SJ, et al. (2018) Seasonal asthma in Melbourne, Australia, and some observations on
457 the occurrence of thunderstorm asthma and its predictability. *PLoS ONE* 13(4):
458 e0194929. <https://doi.org/10.1371/journal.pone.0194929>

459 Singer, B. D., L. H. Ziska, D. A. Frenz, D. E. Gebhard and J. G. Straka (2005).
460 Increasing Amb a 1 content in common ragweed (*Ambrosia artemisiifolia*) pollen as a
461 function of rising atmospheric CO₂ concentrations. *Functional Plant Biology*, 32, 667-
462 670.

463 Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., Rantio-
464 Lehtimäki, A., Severova, E., and Kukkonen, J. (2013). A numerical model of birch
465 pollen emission and dispersion in the atmosphere. Description of the emission module,
466 *Int. J. Biometeorol.*, 57, 45–58, doi:10.1007/s00484-012-0532-z.

467 Suphioglu, C. (1998). Thunderstorm asthma due to grass pollen. *Int. Arch. Allergy*
468 *and Immunology*, 116(4), 253-260.

469 Taylor, P. E. and H. Jonsson (2004). Thunderstorm asthma. *Curr. Allergy Asthma*
470 *Rep.*, 4, 5, 409-413, doi: 10.1007/s11882-004-0092-3

471 Thien, F., Beggs, P. J., Csutoros, D., Darvall, J., Hew, M., Davies, J. M. and Byrne,
472 T. (2018). The Melbourne epidemic thunderstorm asthma event 2016: an investigation

473 of environmental triggers, effect on health services, and patient risk factors. *The Lancet*
474 *Planetary Health*, 2(6), e255-e263.

475 Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson and J.
476 S. Pal, (2007). Changes in severe thunderstorm environment frequency during the 21st
477 century caused by anthropogenically enhanced global radiative forcing. *Proc. Nat. Ac.*
478 *Sci.*, (50) 19719-19723; DOI:10.1073/pnas.0705494104

479 Venables KM, Allitt U, Collier CG, Emberlin J, Greig JB, Hardaker PJ, Highham
480 JH, Laing-Morton T, Maynard RL, Murray V, Strachan D, Tee RD: Thunderstorm-
481 related asthma – The epidemic of 24/25 June 1994. *Clin Exp Allergy* 1997;27:725–736.

482 Waisel, Y., Ganor, E., Glikman, M., Epstein, V., & Brenner, S., (1997). Seasonal
483 distribution of airborne pollen in the coastal plain of Israel. *Aerobiologia*, 13, 127–134.

484 Waisel, Y., Eshel, A., Keynan, N., & Langgut, D. (2008). Ambrosia: A new
485 impending disaster for the Israeli allergic population. *Israel Medical Association*
486 *Journal*, 10, 856–857.

487 Wardman A. E., Stefani D. and J. C. MacDonald (2002), Thunderstorm associated
488 asthma or shortness of breath epidemic: a Canadian case report. *Can Respir J.*, 9, 267–
489 270.

490 Yair, Y., Z. Levin and O. Altaratz (1998). Lightning phenomenology in the Tel-
491 Aviv area from 1989 to 1996. *J. Geophys. Res.*, 103, D8, 9015-9025.

492 Yair, Y., S. Shalev, Z. Erlich, A. Agrachov, E. Katz, H. Saaroni, C. Price and B.
493 Ziv, 2014. Lightning flash multiplicity in eastern Mediterranean winter thunderstorms.
494 *Nat. Hazards Earth Syst. Sci.*, 14, 165-173, doi:10.5194/nhess-14-165-2014.

495 Yair, Y., Sibony, M., and Rubin, B. (2017). Four *Ambrosia* species in Israel:
496 Invasive, naturalized and casual alien plants. *Israel J. Plant Sci.*, 64, 93–98.

497 Yair, Y., (2018), Lightning hazards to human societies in a changing climate.
498 *Environ. Res. Lett.*, 13, 123002, doi: 10.1088/1748-9326/aaea86

499 Yair, Y., Sibony M, Goldberg A, Confino-Cohen R, Rubin B. and E. Shahar (2018).
500 Ragweed species (*Ambrosia* spp.) in Israel: Distribution and allergenicity.
501 *Aerobiologia*, doi.org/10.1007/s10453-018-9542-6

502 Zhang, R. T. Duhl, M. T. Salam, J. M. House, R. C. Flagan, E. L. Avol, F. D.
503 Gilliland, A. Guenther, S. H. Chung, B. K. Lamb and T. M. VanReken (2014).
504 Development of a regional-scale pollen emission and transport modeling framework
505 for investigating the impact of climate change on allergic airway disease. *Biogeosci.*,
506 11,1461-1478.

507 Ziv, B., H. Saaroni, Y. Yair, M. Ganot, H. Baarad and D. Isaschari (2008),
508 Atmospheric factors governing winter thunderstorms in the coastal regions of the
509 eastern Mediterranean. *Theor. Appl. Clim.*, 10.1007/s00704-008-0008-6.

510 Ziska, L. H. et al. (2011). Recent warming by latitude associated with increased
511 length of ragweed pollen season in central North America. *Proc. Nat. Acad. Sci.*, 108,
512 4248-4251.

513

514

515

516

517 **Figure Captions**

518

519 **Figure 1:** A schematic description of the mechanism that enhances the concentrations
520 of airborne aerosols (either pollution particles or pollen) ahead of a mature
521 thunderstorm (Taylor and Jonsson, 2004).

522

523 **Figure 2:** Wind speed at 4 different stations along Israel. Bet Dagan (in blue) is located
524 12 km southeast of Tel-Aviv. Hadera Port (red) is located on the coastline, 45 km north
525 of Tel-Aviv. Hakfar Hayarok (green) is 5 km northeast of Tel-Aviv, and Tel-Aviv coast
526 (purple) is located on the Mediterranean coastline. All stations recorded an abrupt and
527 short-lived increase in wind-speed around 10 AM local time, indicating the passage of
528 the gust front. Data courtesy the Israeli Meteorological Service.

529

530 **Figure 3:** Lightning strokes detected on October 25th 2015 by the ILDN (Israel
531 Lightning Detection Network) operated by the Israeli Electrical Corporation. Each
532 point is a ground stroke. The panels show cumulative values at 30 minutes intervals,
533 local time indicated.

534

535 **Figure 4:** 1-minute accumulated lightning numbers detected on October 25th 2015 as a
536 function of time. The total cloud-to-ground stroke rate (grey) exhibits a sharp maximum
537 around 09:45 local time, as the cells passed over central Israel.

538

539 **Figure 5:** Mass concentration of PM10 aerosols for 16 stations in Israel, 25th October
540 2015. Data is given in $\mu\text{g m}^{-3}$. Note the peak around 1000 local time, coinciding with
541 the passage of the gust front. The sharp, strong peak was measured at the Rambam
542 Medical Center in haifa.

543

544 **Figure 6:** Daily average concentrations of pollen and spore numbers for October 2015,
545 based on data collected at Tel-Aviv University's monitoring station in the botanical
546 gardens on campus (Data courtesy of Prof. Amram Eshel, the Laboratory for Pollen
547 Monitoring, Tel-Aviv University).

548

549 **Figure 7:** Emergency room presentations at 3 Israeli hospitals in the 3 days preceding
550 and following the October 25th 2015 super-cell event: Meir Medical center (blue),
551 Rambam medical center (orange), HaEmek medical center (grey).

552

553 **Figure 8:** Two months of ER presentations of patients with respiratory problems at the
554 Meir Medical Center in Kfar-Saba, central Israel (for the period 1.10.2015-30.11.2015).
555 The October 25th record shows a 250% increase in a single day.

556

557

558

559 **Appendix A**

560

561 Table showing flowering months for various allergenic plants in Israel (based on
562 Keinan, 1992). Yellow marks little flowering, dark brown marks massive flowering.

563

	1	2	3	4	5	6	7	8	9	10	11	12
<i>Cynodon dactylon</i>	Yellow											
<i>Hyparrhenia hirta</i>		Yellow								Yellow		
<i>Pennisetum clandestinum</i>		Yellow										
<i>Stenotaphrum secundatum</i>			Yellow							Yellow		
<i>Paspalum vaginatum</i>				Yellow							Yellow	
<i>Zoisia</i> sp.				Yellow								Yellow
<i>Sorghum halepense</i>					Yellow						Yellow	
<i>Chloris gayana</i>						Yellow					Yellow	
<i>Poa</i> sp.			Yellow									
<i>Hordeum</i> sp.				Yellow								
<i>Lolium</i> sp.					Yellow							
<i>Bromus</i> sp.						Yellow						
<i>Dactylis glomerata</i>							Yellow					
<i>Avena</i> sp.								Yellow				
<i>Parietaria</i> sp.		Yellow									Yellow	
<i>Ricinus communis</i>			Yellow									
<i>Chenopodium</i> sp.				Yellow								
<i>Urtica</i> sp.		Yellow										
<i>Mercurialis annua</i>			Yellow									
<i>Plantago</i> sp.				Yellow								
<i>Amaranthus</i> sp.					Yellow							
<i>Inula viscosa</i>						Yellow						
<i>Ambrosia</i> sp.							Yellow					
<i>Xanthium</i> sp.								Yellow				
<i>Salsola kali</i>									Yellow			
<i>Atriplex halimus</i>										Yellow		
<i>Artemisia monosperma</i>											Yellow	
<i>Artemisia herba alba</i>												Yellow
<i>Eucalyptus</i> sp.	Yellow											
<i>Thuja</i> sp.		Yellow										
<i>Cupressaceae</i>			Yellow									
<i>Phoenix dactylifera</i>				Yellow								
<i>Quercus ithaburensis</i>					Yellow							
<i>Quercus calliprinos</i>						Yellow						
<i>Pistacia lentiscus</i>		Yellow										
<i>Pistacia palaestina</i>			Yellow									
<i>Olea europaea</i>				Yellow								
<i>Acacia</i> sp.					Yellow							
<i>Carya illinoiensis</i>						Yellow						
<i>Ailanthus glandulosa</i>							Yellow					
<i>Ceratonia siliqua</i>								Yellow				
<i>Schinus</i> sp.									Yellow			
<i>Casuarina</i> sp.										Yellow		